The National Energy Technology Laboratory

Strategic Center for Natural Gas

Strategic Center for Natural Gas

"... I am also announcing today that I will establish, within this facility, a new Center for Advanced Natural Gas Studies."

"We need one place that looks out for the future of natural gas -from borehole to burnertip. One place that understands the
innovations needed to produce tomorrow's gas."

"In other words, we need a <u>strategic</u> center that looks at the big picture and devises the bold ideas that allow the FULL potential of natural gas to be achieved. And I want <u>that</u> center to be located at <u>this</u> Laboratory."

Bill Richardson, Secretary of Energy December 10, 1999

Strategic Center for Natural Gas

Vision:

By 2020, U.S. public is enjoying benefits from an increase in gas use:

- Affordable supply
- Reliable delivery
- Environmental protection

Mission:

Be the focal point for an integrated gas program:

- Spearhead annual DOE-wide gas RD&D planning and program assessment
- Provide science and technology advances through NETL's on-site programs
- Shape, fund, and manage extramural RD&D
- Conduct studies to support policy development

RD&D Programs

Strategic Center for Natural Gas

Gas Exploration & Production

- Resource and reserve assessments
- Improved drilling and completion technologies for low-perm/deep gas
- · Hydrates, deep gas and off-shore

Gas Infrastructure Reliability

- Enhance pipeline safety & reliability
- Increase gas deliverability
- Increase operational flexibility of gas
- storage facilities

Distributed Generation

- PAFC entering commercial market
- MCFC high efficiency
- SOFC/SECA low cost
- Hybrid turbine/fuel cell ultimate
- efficiency
- Reciprocating engines lowest cost

Next Generation Gas Turbines for Large Industries / Utilities

- Flexible 30-300 MW turbine systems
- RAM Improvement
- Supporting R&D

Enough Affordable Natural Gas to Meet Demand?

Projected Natural Gas Consumption 2000-2020

Natural Gas Exploration and Production

- Near-term: recover more from known fields
- Mid-term: unlock low perm resources containing natural fractures
- Long-term: encourage exploration for deep gas and hydrates

Developing Technologies to Ensure an Abundant, Economical Supply of Natural Gas With Minimal Environmental Impact

Gas Hydrates Turning a Problem into a Potential Resource

A huge worldwide resource

- Oceans: 30,000 to 49,100,000 Tcf
- Continents: 5,000 to 12,000,000 Tcf
- Conventional resource: 3,000 Tcf

A huge US resource

- If 1% recoverable: 3,200 Tcf
- Conventional resource: 1,301Tcf

Program elements

- Resource characterization
- Safety & seafloor stability
- Global climate change
- Production

Hydrate Authorization Bill Passed May 2000

- Requires government to coordinate
 - Energy, Interior, Defense, Commerce, NSF
- Mandates advisory panel from industry, academia, government

Fire in the Ice The Deep Sea Dive for Methane Hydrates

Gas Infrastructure Reliability

Infrastructure includes:

- Transmission systems
- Distribution systems
- Gas storage

Program goals

- Enhance safety and reliability
- Increase gas deliverability
- Reduce environmental impact

Infrastructure Activities

Visioning Workshop

- May 3, 2000
- Pittsburgh, PA
- 15 industry executives

Roadmapping Workshop

- June 6 & 7, 2000
- St. Louis, MO
- 40 industry experts

Goals

- Elicit stakeholder input
- Develop vision
- Identify technology needs & opportunities
- Determine government and industry roles

R&D Needs

From the Roadmapping Workshop . . .

Near Term

- Locatable plastic pipe
- Laser methane/ethane detectors
- Imaging and locating underground pipes
- Improve the permitting process

Mid Term

- Sensor on guided boring tool
- More sophisticated underground directional drilling
- Warning system on excavation equipment
- Integrity assessment
- New composite materials

Long Term

- Intrusion detection device
- 3-D subsurface facility locating techniques
- Multi-functional sensors (residual life, third party damage, mapping)
- High pressure composite pipe

Next Generation Turbine Systems Program Elements

Systems Development

- -Flexible Turbine Systems
- -Turbine/Fuel Cell Hybrids
- Revolutionary Concepts

Power Plant Technology

 Condition monitoring, life prediction, performance and degradation models, cycle analysis, expert systems, performance optimization, prognostics, rotor dynamics, life management tools, operational optimization and life cycle cost reduction

Research and Development

 Low-emission combustion systems, materials, advanced computing, sensors, diagnostics, controls, monitoring

Fuel Cells for Stationary Power

Proton

Phosphoric Acid ONSI 200-kW PAFC

Molten Carbonate FCE 250-kW stack

Solid Oxide Siemens Westinghouse 250-kW Hybrid

Fuel Cells: An Evolving Opportunity

2000 2005 2010 2015

Niche

\$3,000 - 4,000/kW Ultra-Reliability, Green

Near-Term Distributed

\$1,000 - 4,000/kW Opportunity Fuels, Remote Sites FCE, NWPS, Plug Power,

Early Mass

\$400 - 800/kW
APU, Residential, Propulsion
Assist, DOD Field Power
SECA

Propulsion, Central Power

Many

Solid State Fuel Cells -The Choice for the New Millennium

- Inherently high efficiency
- Couples easily with hightemperature fuel reforming
- Simple and efficient heat removal designs
- Low-cost manufacturing

Solid State Energy Conversion Alliance

A High Power Density, Low Cost Core Module for Multiple Applications

SECA Development: Progressive Applications SECA

SECA Structure

SECA Players

Industry

National Labs

Pacific Northwest National Laboratory

OAK RIDGE NATIONAL LABORATORY

Advanced Research

The University of Montana

Fuel Cell/Turbine Hybrids

2000

- > \$10,000/kW
- 57-59% efficiency
- 220 kW

2004-2010

- DG market
- \$1,000-1,200/kW
- 70% efficiency
- 1-20 MW

Vision 21 Fuel Cell/Turbine Hybrid Systems

Goals

- 70% (LHV) Electric Efficiency
- 20MW or Less
- Commercialization by 2010

Players

- SWPC/Allison
- SWPC/Caterpillar
- FCE/Allison
- MCP/NREC
- McDermott/NREC

- Vision 21 Award to FCE/Capstone
- Solicitation issued in FY-2000

Vision 21 Ultra-Clean Energy Plant of Future

Energy Plants for Post-2015

- Use available feeds:
 - Coal, gas, biomass, waste
- Electricity is primary product
 - May co-produce fuels, chemicals, steam, heat

Goal:

Absolutely Minimize Environmental Implications of Use of Fossil Energy!

Approach:

- Maximize efficiency
 - 60% coal-to-electric
 - 75% natural gas-to-electric
- Near-zero emissions
 - Option for carbon sequestration

